On a Teichmüller functor between the categories of complex tori and the Effros–Shen algebras

نویسنده

  • Igor V. Nikolaev
چکیده

A covariant functor from the category of the complex tori to the category of the Effros–Shen algebras is constructed. The functor maps isomorphic complex tori to the stably isomorphic Effros–Shen algebras. Our construction is based on the Teichmüller theory of the

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On a Teichmüller functor between the categories of complex and noncommutative tori

A covariant functor from category of complex tori to the category of noncommutative tori is constructed. The functor maps isomorphic complex tori to the Morita equivalent noncommutative tori. Our construction is based on the Teichmüller theory of Riemann surfaces.

متن کامل

On categories of merotopic, nearness, and filter algebras

We study algebraic properties of categories of Merotopic, Nearness, and Filter Algebras. We show that the category of filter torsion free abelian groups is an epireflective subcategory of the category of filter abelian groups. The forgetful functor from the category of filter rings to filter monoids is essentially algebraic and the forgetful functor from the category of filter groups to the cat...

متن کامل

Noncommutative localization

The Teichmüller functor maps the category of elliptic curves over the field of characteristic zero to a category of the Effros-Shen algebras [9]. In the present note, we extend the functor to include the elliptic curves over the field of characteristic p. In particular, it is shown that the localization of a commutative ring at the maximal ideal corresponds to a crossed product of the Effros-Sh...

متن کامل

Functors Induced by Cauchy Extension of C$^ast$-algebras

In this paper, we give three functors $mathfrak{P}$, $[cdot]_K$ and $mathfrak{F}$ on the category of C$^ast$-algebras. The functor $mathfrak{P}$ assigns to each C$^ast$-algebra $mathcal{A}$ a pre-C$^ast$-algebra $mathfrak{P}(mathcal{A})$ with completion $[mathcal{A}]_K$. The functor $[cdot]_K$ assigns to each C$^ast$-algebra $mathcal{A}$ the Cauchy extension $[mathcal{A}]_K$ of $mathcal{A}$ by ...

متن کامل

Abelian Categories of Modules over a (Lax) Monoidal Functor

In [CY98] Crane and Yetter introduced a deformation theory for monoidal categories. The related deformation theory for monoidal functors introduced by Yetter in [Yet98] is a proper generalization of Gerstenhaber’s deformation theory for associative algebras [Ger63, Ger64, GS88]. In the present paper we solidify the analogy between lax monoidal functors and associative algebras by showing that u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009